Advanced LIGO subsystems
are the organizational units of the overall project. Follow the links below to view the mission and progress of each subsystem.

Auxiliary Optics Core Optics
Data Acquisition Data and
Input Optics

LIGO Technology Development and Migration

Explore the menu of case study links (left) to view impacts of LIGO technology across the broader science and engineering community.

Technology Type:  Optical Components

High Power Electro-Optical Modulator

** Institution:  University of Florida Gainsville
** Contact:  Volker Quetschke  
volker.quetschke(at), 956.882.6723
** Funding Agencies:  National Science Foundation
** Technology Source:  LIGO Scientific Collaboration (LSC) members
      outside of LIGO Laboratory

 Patent Thumbnail

[volker]Laser metrology and many other scientific applications of high-power laser beams require the phase modulation of the laser field. Previous commercial phase modulators were incapable of handling laser powers in excess of a few watts without beam heating resulting in thermo optic distortion of the laser beam. Our newly developed electro-optical modulators (EOM) can handle up to 200W of continuous laser power with no beam degradation. These high-power EOMs attracted such strong interest that they were initially prototyped by the New Focus company (now a division of Newport Corporation), and inspired their new high-power KTP modulator standard product line. Our new design was also proven to reduce the spurious polarization and amplitude modulation of phase modulators by several orders of magnitude while eliminating the very strict alignment tolerances of earlier modulators. This enables new applications in high resolution metrology, sensing, or ranging in many different environments. A schematic of the newly developed Advanced LIGO modulator is shown below to the right. The wedges in the crystal separate the two polarization components, which reduces the spurious amplitude and polarization modulation by orders of magnitude. The three electrodes shown allow modulation of the crystal with multiple frequencies simultaneously reducing the number of crystals required in multi frequency modulation applications.


Explore Advanced LIGO    Construction Schedule
   Instrumentation and Astrophysics
   An Overview of the Upgrades
   The International Partnership
   Science Impacts
   LIGO Technology Transfers
   LIGO Scientific Collaboration
   Public Outreach
   LIGO Magazine
   aLIGO Home